Radiation-guided drug delivery to mouse models of lung cancer.
نویسندگان
چکیده
PURPOSE The purpose of this study was to achieve improved cancer-specific delivery and bioavailability of radiation-sensitizing chemotherapy using radiation-guided drug delivery. EXPERIMENTAL DESIGN Phage display technology was used to isolate a recombinant peptide (HVGGSSV) that binds to a radiation-inducible receptor in irradiated tumors. This peptide was used to target nab-paclitaxel to irradiated tumors, achieving tumor-specificity and enhanced bioavailability of paclitaxel. RESULTS Optical imaging studies showed that HVGGSSV-guided nab-paclitaxel selectively targeted irradiated tumors and showed 1.48 ± 1.66 photons/s/cm(2)/sr greater radiance compared with SGVSGHV-nab-paclitaxel, and 1.49 ± 1.36 photons/s/cm(2)/sr greater than nab-paclitaxel alone (P < 0.05). Biodistribution studies showed >5-fold increase in paclitaxel levels within irradiated tumors in HVGGSSV-nab-paclitaxel-treated groups as compared with either nab-paclitaxel or SGVSGHV-nab-paclitaxel at 72 hours. Both Lewis lung carcinoma and H460 lung carcinoma murine models showed significant tumor growth delay for HVGGSSV-nab-paclitaxel as compared with nab-paclitaxel, SGVSGHV-nab-paclitaxel,and saline controls. HVGGSSV-nab-paclitaxel treatment induced a significantly greater loss in vasculature in irradiated tumors compared with unirradiated tumors, nab-paclitaxel, SGVSGHV-nab-paclitaxel, and untreated controls. CONCLUSIONS HVGGSSV-nab-paclitaxel was found to bind specifically to the tax-interacting protein-1 (TIP-1) receptor expressed in irradiated tumors, enhance bioavailability of paclitaxel, and significantly increase tumor growth delay as compared with controls in mouse models of lung cancer. Here we show that targeting nab-paclitaxel to radiation-inducible TIP-1 results in increased tumor-specific drug delivery and enhanced biological efficacy in the treatment of cancer.
منابع مشابه
Image-guided radiotherapy platform using single nodule conditional lung cancer mouse models
Close resemblance of murine and human trials is essential to achieve the best predictive value of animal-based translational cancer research. Kras-driven genetically engineered mouse models of non-small-cell lung cancer faithfully predict the response of human lung cancers to systemic chemotherapy. Owing to development of multifocal disease, however, these models have not been usable in studies...
متن کاملCalculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy
Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...
متن کاملThe colossal circumvention of the lung lesion during lung stereotaxy
This is a case report on stereotaxic (Stereotactic Body Radiotherapy-SBRT) for lung cancer located in the left lower lobe (Segment 6, S6). There have been no reports on marked displacement of the peripheral lung cancer during radiotherapy. A pulmonary nodule was discovered on computed tomography (CT) conducted for a persistent cough in an 87-year-old male. According to diagnostic imaging, this ...
متن کاملEvaluation of antioxidant and anti-cancer properties of curcumin / beta- and gamma-cyclodextrin complexes modified with chitosan nanoparticles on lung cancer cell A549
The aim of this study was to investigate the interaction modification of curcumin complex molecule (CUR) in beta- and gamma-cyclodextrin (β-CD and γ-CD) carriers with chitosan (CS) nanoparticles for targeted drug delivery and to compare their performance. The targeted drug delivery system includes the therapeutic agent of the CS nanoparticles targeting section of the same drug and the CD carrie...
متن کاملCytotoxicity Effect of Cold Atmospheric Plasma on Melanoma (B16-F10), Breast (MCF-7) and Lung (A549) Cancer Cell Lines Compared with Normal Cells
Background and purpose: Cancer is one of the major health challenges in the world. The efficacy of current treatments is low but their side effects are high. Cold atmospheric plasma (CAP) is a new modality for cancer treatment. This study aimed to compare the cytotoxicity effect of CAP on the cell line models of common cancers and normal cells. Materials and methods: In this experimental study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 16 20 شماره
صفحات -
تاریخ انتشار 2010